依据索引文档的地理坐标来进行搜索。Elasticsearch 也可以处理这种搜索。——空间搜索
一、为空间搜索准备映射
PUT my_space_test{ "mappings": { "poi": { "properties": { "name": { "type": "string" }, "locationpoint": { "type":"geo_point" //随意的地理坐标 }, "locationshape": { "type": "geo_shape" //随意的地理形状 } } } }}
二、批量加入数据
POST my_space_test/poi/_bulk{"index":{"_id":1}}{"name":"New York","locationpoint":"40.664167, -73.938611","locationshape":{"type":"polygon","coordinates":[[[4.8833,52.38617],[4.87463,52.37254],[4.87875,52.36369],[4.8833,52.38617]]]}}{"index":{"_id":2}}{"name":"London","locationpoint":[-0.1275,51.5072222],"locationshape":{"type":"polygon","coordinates":[[[0,0],[4.87463,52.37254],[4.87875,52.36369],[0,0]]]}}{"index":{"_id":3}}{"name":"Moscow","locationpoint":{"lat":55.75,"lon":37.616667},"locationshape":{"type":"polygon","coordinates":[[[22,22],[4.87463,52.37254],[4.87875,52.36369],[22,22]]]}}{"index":{"_id":4}}{"name":"Sydney","locationpoint":"-33.859972, 151.211111","locationshape":{"type":"polygon","coordinates":[[[4.8833,52.38617],[4.87463,52.37254],[4.87875,52.36369],[4.8833,52.38617]]]}}{"index":{"_id":5}}{"name":"Sydney","locationpoint":"eycs0p8ukc7v","locationshape":{"type":"polygon","coordinates":[[[4.8833,52.38617],[4.87463,52.37254],[4.87875,52.36369],[4.8833,52.38617]]]}}细致观看locationpoint字段能够看到坐标能够使用多种形式来赋值,能够使用字符串、数组(仅仅能包括两个数值)、一个对象、地理散列值等来提供经纬度。
详细每种方式可能略有不同,详细使用再查相关资料。
再来看一下。locationshape,其形式就更加多样了,能够是一个点 ,即为一组数值对 [ 经度,维度 ] ,也能够是一个框 [ [左。上], [右,下] ],还能够是多边形。可是必须保证第一个坐标和最后一个坐标是同样的,从而保证是一个闭合的图形。[ [ [1,1],[2,2], [3,4] ,[1,1] ] ] ,能够发现多边形的定义中其能够是多个多边形,是一个可扩展的数组。
三、查询方式
3.1 基于距离排序
GET my_space_test/poi/_search{ "query": { "match_all": {} }, "sort": [ { "_geo_distance": { "locationpoint": { "lat": 48.8567, "lon": 2.3508 }, "unit": "km", "order": "asc" } } ]}GET my_space_test/poi/_search{ "query": { "match_all": {} }, "sort": [ { "_geo_distance":<{ "locationpoint": [ //或者是:"locationpoint":" 48.8567,2.3508" 2.3508, 48.8567 ], "unit": "km", "order": "asc" } } ]}以上查询的结果是一样的(注意数组和字符串坐标的位置顺序是不同的)通过距离坐标点 [ 2.3508,48.8567 ]的大小来对查询文档进行排序。这在实际搜索中很实用,能够返回临近的一些坐标点。
3.2 边界框过滤(获得包括在指定区域内文档)
"query": { "filtered": { "filter": { "bool": { "should": [ { "geo_bounding_box": { "locationpoint": { "top_left": "52.4796,-1.903", "bottom_right": "48.8567,2.3508" } } }, { "geo_distance":{ "distance": 500, "distance_unit": "km", "locationpoint": "48.8567,2.3508" } }]}}}}
示意图 1
返回的文档就像是包括在矩形和圆形中的蓝色点,红色点用来确定边框,红色线段确定距离范围。在图形之外的点就被过滤掉了。以上都是针对类型为geo_point
以下我们来看一下geo_shape类型是怎样使用的?
"query": { "filtered": { "filter": { "bool": { "should": [ { "geo_shape": { "locationshape": { "indexed_shape": { //使用已经索引的形状 "index": "my_space_test", "type": "poi", "id": "4", "path": "locationshape" }, "relation": "within" } } }, { "geo_shape": { "locationshape": { //自己定义形状——圆 "shape": { "type": "circle", "radius": "1km", "coordinates": [ -45, 45 ] }, "relation": "within" } } },{ "geo_shape": { "locationshape": { "shape": { "type": "envelope", //自己定义的形状包络线,即:box(矩形) "coordinates": [ [ -45, 45 ], [ 45, -45 ] ] }, "relation": "within" } } },{ "geo_shape": { "locationshape": { //自己定义的多边形。一定要注意,多边形的定义是包括在一个数组中的,是一个可扩展的数组 "shape": { "type": "polygon", "coordinates": [[[1,1],[2,3],[4,2],[1,1]]] }, "relation": "within" } } } ] } } } }首先来说,过滤查询的字段locationshap 中包括多种形状类型。有点、包络线、多边形、甚至说多个多边形
以上的查询是看那些形状位于所查询的形状之内。
我们再来个示意图吧,这样好理解一些。
示意图2
比方说,我们能够定义一个中国的多边形。然后查找那些城市是位于中国的。这些城市也能够是多边形,当然也能够用一个点来定义,通过这种过滤方式都能够准确的找到。
怎么样?ES是不是非常炫?革命尚未成功,同志仍需努力!坚持你才干看到最美的风景,即便一路上会有荆棘。接下来看看。空间搜索相应的高亮和聚合。待续……