博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
[ElasticSearch] 空间搜索 (一)
阅读量:6659 次
发布时间:2019-06-25

本文共 4963 字,大约阅读时间需要 16 分钟。

依据索引文档的地理坐标来进行搜索。Elasticsearch 也可以处理这种搜索。——空间搜索

一、为空间搜索准备映射

PUT my_space_test{  "mappings": {    "poi": {      "properties": {        "name": {          "type": "string"        },        "locationpoint": {          "type":"geo_point"  //随意的地理坐标        },        "locationshape": {          "type": "geo_shape"  //随意的地理形状        }      }    }  }}

二、批量加入数据

POST my_space_test/poi/_bulk{"index":{"_id":1}}{"name":"New York","locationpoint":"40.664167, -73.938611","locationshape":{"type":"polygon","coordinates":[[[4.8833,52.38617],[4.87463,52.37254],[4.87875,52.36369],[4.8833,52.38617]]]}}{"index":{"_id":2}}{"name":"London","locationpoint":[-0.1275,51.5072222],"locationshape":{"type":"polygon","coordinates":[[[0,0],[4.87463,52.37254],[4.87875,52.36369],[0,0]]]}}{"index":{"_id":3}}{"name":"Moscow","locationpoint":{"lat":55.75,"lon":37.616667},"locationshape":{"type":"polygon","coordinates":[[[22,22],[4.87463,52.37254],[4.87875,52.36369],[22,22]]]}}{"index":{"_id":4}}{"name":"Sydney","locationpoint":"-33.859972, 151.211111","locationshape":{"type":"polygon","coordinates":[[[4.8833,52.38617],[4.87463,52.37254],[4.87875,52.36369],[4.8833,52.38617]]]}}{"index":{"_id":5}}{"name":"Sydney","locationpoint":"eycs0p8ukc7v","locationshape":{"type":"polygon","coordinates":[[[4.8833,52.38617],[4.87463,52.37254],[4.87875,52.36369],[4.8833,52.38617]]]}}
细致观看locationpoint字段能够看到坐标能够使用多种形式来赋值,能够使用字符串、数组(仅仅能包括两个数值)、一个对象、地理散列值等来提供经纬度。

详细每种方式可能略有不同,详细使用再查相关资料。

再来看一下。locationshape,其形式就更加多样了,能够是一个点 ,即为一组数值对 [ 经度,维度 ] ,也能够是一个框 [ [左。上], [右,下] ],还能够是多边形。可是必须保证第一个坐标和最后一个坐标是同样的,从而保证是一个闭合的图形。[ [ [1,1],[2,2], [3,4] ,[1,1] ] ] ,能够发现多边形的定义中其能够是多个多边形,是一个可扩展的数组。

三、查询方式

3.1 基于距离排序

GET my_space_test/poi/_search{  "query": {    "match_all": {}  },  "sort": [    {      "_geo_distance": {        "locationpoint": {          "lat": 48.8567,          "lon": 2.3508        },        "unit": "km",        "order": "asc"      }    }  ]}GET my_space_test/poi/_search{  "query": {    "match_all": {}  },  "sort": [    {        "_geo_distance":<{        "locationpoint": [       //或者是:"locationpoint":" 48.8567,2.3508"          2.3508,          48.8567        ],        "unit": "km",        "order": "asc"      }    }  ]}
以上查询的结果是一样的(注意数组和字符串坐标的位置顺序是不同的)通过距离坐标点 [  2.3508,48.8567 ]的大小来对查询文档进行排序。这在实际搜索中很实用,能够返回临近的一些坐标点。

3.2 边界框过滤(获得包括在指定区域内文档)

"query": {    "filtered": {      "filter": {        "bool": {          "should": [            {             "geo_bounding_box": {                "locationpoint": {                  "top_left": "52.4796,-1.903",                  "bottom_right": "48.8567,2.3508"                }              }            },            {             "geo_distance":{                "distance": 500,                "distance_unit": "km",                "locationpoint": "48.8567,2.3508"              }            }]}}}}
示意图 1
返回的文档就像是包括在矩形和圆形中的蓝色点,红色点用来确定边框,红色线段确定距离范围。在图形之外的点就被过滤掉了。以上都是针对类型为geo_point
以下我们来看一下geo_shape类型是怎样使用的?
"query": {    "filtered": {      "filter": {        "bool": {          "should": [            {              "geo_shape": {                "locationshape": {                  "indexed_shape": {             //使用已经索引的形状                    "index": "my_space_test",                    "type": "poi",                    "id": "4",                    "path": "locationshape"                  },                  "relation": "within"                }              }            },            {              "geo_shape": {                "locationshape": {          //自己定义形状——圆                  "shape": {                    "type": "circle",                       "radius": "1km",                    "coordinates": [                      -45,                      45                    ]                  },                  "relation": "within"                }              }            },{              "geo_shape": {                "locationshape": {                  "shape": {                    "type": "envelope",     //自己定义的形状包络线,即:box(矩形)                    "coordinates": [                      [                        -45,                        45                      ],                      [                        45,                        -45                      ]                    ]                  },                  "relation": "within"                }              }            },{              "geo_shape": {                "locationshape": {       //自己定义的多边形。一定要注意,多边形的定义是包括在一个数组中的,是一个可扩展的数组                  "shape": {                    "type": "polygon",                    "coordinates": [[[1,1],[2,3],[4,2],[1,1]]]                  },                  "relation": "within"                }              }            }          ]        }      }    }  }
首先来说,过滤查询的字段locationshap 中包括多种形状类型。有点、包络线、多边形、甚至说多个多边形
以上的查询是看那些形状位于所查询的形状之内。
我们再来个示意图吧,这样好理解一些。

示意图2
比方说,我们能够定义一个中国的多边形。然后查找那些城市是位于中国的。这些城市也能够是多边形,当然也能够用一个点来定义,通过这种过滤方式都能够准确的找到。
怎么样?ES是不是非常炫?革命尚未成功,同志仍需努力!坚持你才干看到最美的风景,即便一路上会有荆棘。接下来看看。空间搜索相应的高亮和聚合。待续……

你可能感兴趣的文章
html实现的鼠标放在链接上出现文字提示效果
查看>>
samba
查看>>
菜鸟学Linux 第021篇笔记 特殊权限SUID、FACL、Linux 终端
查看>>
在LAN中搭起的网桥
查看>>
shell 特殊变量
查看>>
Holle World
查看>>
pythopn 迭代器
查看>>
pxe
查看>>
Linux mkdir&rmdir命令
查看>>
Splunk收购SignalSense
查看>>
Exchange-获取主、所有SMTP地址
查看>>
AllowOverride以及Options相关指令
查看>>
Linux sgid功能
查看>>
炒币有风险,AI算法帮助识别ICO诈骗
查看>>
Grafana与Elasticsearch
查看>>
一些Linux shell
查看>>
[kipmi0]进程CPU占用率高
查看>>
PHPMailer发邮件
查看>>
JS 异常之 missing ) after argument list 错误释疑
查看>>
Windows Server 笔记(七):Windows Server 2012 R2 NIC Teaming(NIC组)
查看>>